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Thermal management of a solid oxide fuel cell (SOFC) stack essentially involves control of the tempera-
ture within a specific range in order to maintain good performance of the stack. In this paper, a nonlinear
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eywords:

temperature predictive control algorithm based on an improved Takagi–Sugeon (T–S) fuzzy model is pre-
sented. The improved T–S fuzzy model can be identified by the training data and becomes a predictive
model. The branch-and-bound method and the greedy algorithm are employed to set a discrete optimiza-
tion and an initial upper boundary, respectively. Simulation results show the advantages of the model

based

olid oxide fuel cell (SOFC)
akagi–Sugeno (T–S) fuzzy model
odel predictive control (MPC)

predictive control (MPC)

. Introduction

The solid oxide fuel cell is a high- or intermediate-temperature
uel cell, which operates in the range 600–1000 ◦C. The SOFC system
s generally considered to suit the generation of electricity and heat
n industrial application. A high operating temperature allows inter-
al reforming and improves the reaction kinetics [1]. However, the

uel cell can be damaged by high temperature due to thermal fatigue
r thermal cracking. High temperature also affects the stack relia-
ility and durability, and shortens the stack lifespan [2]. Therefore,
hermal management that controls the operating temperature and
educes temperature fluctuation is very important for SOFC stacks.

Many offline model-based control methods have been estab-
ished for fuel cells [3–9], but few papers deal with MPC based on
nline control. MPC has been an active field of research during the
ast three decades, and there have been numerous successful appli-
ations of MPC technology [10–12]. MPC [13,14] has a number of
dvantages in that it can handle multivariable system problems,
llows operation states close to the constraints, is capable of aware-
ess of the actuator limitations of the model-based control, etc.

PC consists of model prediction, receding horizon optimization,

nd online feedback correction [15]. The SOFC system is a nonlinear
ne, in which the parameters vary within an operating range, and
n MPC algorithm can satisfy the requirements of a control strategy.

∗ Corresponding author. Tel.: +86 027 87540924; fax: +86 027 87540924.
E-mail address: lixi@hust.edu.cn (X. Li).

378-7753/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2009.04.022
on the identified and improved T–S fuzzy model for an SOFC stack.
© 2009 Elsevier B.V. All rights reserved.

Some researchers have examined control methods and strate-
gies in relation to the SOFC system. Jurado [16] built a predictive
control model to achieve online control of an SOFC system, which
used a fuzzy Hammerstein model identified by the input–output
data. Wu et al. [17] applied a nonlinear model predictive control
method in order to control the voltage and guarantee fuel utiliza-
tion within a safe range. The nonlinear predictive controller was
based on an improved radial basis function (RBF) neural network,
and a genetic algorithm (GA) was used to optimize the parameters.
Yang et al. [18] presented a nonlinear predictive control algorithm
based on a T–S fuzzy model for a molten carbonate fuel cell stack.

In this study, an online nonlinear MPC scheme based on an
improved T–S fuzzy model has been built to control the temper-
ature within a safe range. This improved T–S fuzzy model could
be identified by training data that were provided by a physical
model from Ref. [19]. The control sequence could be discretized
and optimization could be sought using a principle of the branch-
and-bound method, and a greedy algorithm has been employed
to set the initial upper boundary for the performance index [20].
The MPC algorithm met the requirements for an online tempera-
ture control strategy, and the simulation results reflected the more
effective temperature control.

2. Structure of the MPC system for an SOFC
2.1. Temperature predictive control system

The frame of the nonlinear MPC system of an SOFC is shown in
Fig. 1, which mainly consists of a controlled plant (SOFC stack), a

http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:lixi@hust.edu.cn
dx.doi.org/10.1016/j.jpowsour.2009.04.022
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at the (k − 1)th instant:
Fig. 1. The structure of the MPC system.

onlinear improved T–S fuzzy predictive model, and a predictive
ontroller. The SOFC physical model (see Appendix B) described in
ef. [19] was built with MATLAB to imitate the real 3.5 kW SOFC
tack and is shown in Fig. 2. The physical model was constructed
rom the mass balance equations and the enthalpy balance equa-
ions. In addition, the MPC system also contained modules of the
ranch-and-bound algorithm, the greedy algorithm, and the tapped
elay line (TDL). For the SOFC dynamic physical model, tempera-
ure was the controlled variable. Flow rates of hydrogen and air
ere chosen as manipulated variables, and the load current was

onsidered as a disturbance.
In Fig. 1, yref is the reference curve of stack temperature, u(k) is

he manipulated variable, y(k) is the current value of stack temper-
ture, and ŷ(k + 1) is the predicted next value. The T–S fuzzy model
redicts future stack temperature values on the basis of history
tack temperature values. The optimal controller can determine
he next control signal for the SOFC stack according to the differ-
nce between the next reference values and the predicted stack
emperature values.
.2. Predictive model based on an improved T–S fuzzy model

An improved T–S fuzzy model can be obtained by antecedent
nd consequent identification. The fuzzy rule is of the form “if. . .

Fig. 2. The SOFC stack
urces 193 (2009) 699–705

then. . .”. The ith rule of the lth output ŷl,i(k + 1) is given by

Rl,i : If x(k) is Al
i, then

ŷl,i(k + 1) = pl
i,0 + pl

i,1xk1 + · · · + pl
i,nxkn (i = 1, . . . , c) (1)

where x(k) is the regression data vector consisting of input–output
data at the kth instant and before, c is the number of rules, Al

i
=

{Al
i,1, . . . , Al

i,n
} is the set of membership functions associated with

the ith rule, and pl
i
= [pl

i,0, pl
i,1, . . . , pl

i,n
] is the parameter vector of

the ith submodel.
Antecedent identification is implemented by fuzzy clustering

based on the principle of the fuzzy C-means (FCM) algorithm [21].
The consequent part of the fuzzy rule is identified by using the
traditional linear identification method, the least-squares method.

The improved T–S fuzzy model is fundamentally different from
the modified T–S fuzzy model in Ref. [19] because the latter is
an offline model method whereas the former is an online model
method. Offline models are sometimes made up of many control
rules and the open-loop data that they generate do not cover all
data needed for closed-loop control, hence it is difficult to obtain
accurate predictive output with such models.

The specific algorithm and formula of the improved T–S model
is inferred as follows [21–25]:

(1) Initialization of the number of fuzzy clustering c (c is greater
than 1), the clustering center vector vi = [vi1 . . . vin] (i = 1, . . .,
c), the fuzzy parameter m (m is greater than 1), the discarding
index q (q is greater than 1), and the learning rate � (� is greater
than 0).

(2) Assessment of whether there is a clustering center vector vi in
the q (discarding index) consecutive sampling period that sat-
isfies the criterion that the distance from vi to the consecutive
input–output data vector is always the farthest. If so, a new cen-
ter vector is adopted to replace vi, for example, the current data
vector x(k).

(3) Calculation of the distance between x(k) and each cluster center
d′
i(k) =

√√√√ n∑
j=1

[xj(k) − vij(k)]2, i = 1, . . . , c (2)

physical model.
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and accumulating the number of clustering satisfying the crite-
rion that the distance between each clustering center vector and
the consecutive input–output data vector is always the farthest.

4) Determination of the membership degree of x(k) with respect
to the ith clustering at the (k − 1)th instant:

�′
i(k) =

⎡
⎣ c∑

j=1

(
d′

i
(k)

d′
j
(k)

)(2/(m−1))
⎤
⎦

−1

, i = 1, . . . , c (3)

5) Adjustment of the clustering center vector at the kth instant
according to the membership degree of x(k) with respect to the
ith clustering at the (k − 1)th instant:

vi(k) = vi(k − 1) + ��′
i(k)2[x(k) − vi(k − 1)] (4)

6) Calculation of the distance between x(k) and each clustering
center as well as the membership degree of x(k) according to
the new clustering center at the kth instant:

di(k) =

√√√√ n∑
j=1

[xj(k) − vij(k)]2 (5)

�i(k) =

⎡
⎣ c∑

j=1

(
di(k)
dj(k)

)(2/(m−1))
⎤
⎦

−1

(6)

7) Use of the least-squares recurrence method to identify the
linear composition factors of consequence. The data vector
x(k) = [xk1 xk2 . . . xkn] is given. The output of the fuzzy model,
ŷ(k + 1), is then calculated:

ŷ(k + 1) =
∑c

i−1
ωi[x(k)]ŷi(k + 1)∑c

i=1
ωi[x(k)]

=
c∑

i=1

�i(k)ŷi(k + 1) =
c∑

i=1

�i(k)(pi0 + pi1xk1 + · · · + pinxkn)

= ˚(k) × �

(7)

where ωi[x(k)] expresses expectance value,

�i(k) = ωi[x(k)]∑c
i=1ωi[x(k)]

˚(k)=[�1 �2· · ·�c �1xk1 �2xk1· · ·�cxk1· · ·�1xkn �2xkn· · ·�cxkn]

� = [p10 p20· · ·pc0 p11 p21· · ·pc1· · ·p1n p2n· · ·pcn]T

The least-squares recurrence algorithm is employed to iden-
tify � in order to minimize the total cumulative square-root
error between the actual output and the model output.

8) If the control process does not end, k = k − 1, it returns to Step 2.

Completion of the above modeling process leads to a nonlinear
mproved T–S fuzzy predictive model.

. Discrete optimization of control variables

MPC consists of the identified predictive model, the objective

unction, and all kinds of constraints of the system variables [26].

PC must find a control sequence in the future limited horizon so
hat the objective function is minimized, and the first control vari-
ble of a control sequence is imposed on the controlled objective in
rder to achieve so-called receding horizon optimization control.
urces 193 (2009) 699–705 701

In this study, the nonlinear predictive control algorithm for opti-
mization is described as follows. The task is to search for an optimal
control sequence U(k) (=[u(k) u(k + 1). . .u(k + M − 1)]) that satisfies
the condition that the objective function is minimized on the basis
of the fuzzy predictive model, the prediction horizon P, the control
horizon M (M ≤ P), and the regression data vector x′(k) consisting of
input–output data at the current instant and before:

x′(k) = [u(k − 1), . . . , u(k − nu), y(k), . . . , y(k − ny)] (8)

Here, the quadratic objective function J is employed:

J =
P∑

i=1

qi[y(k + i) − ym(k + i)]2 +
M∑

j=1

rj�u2(k + j − 1) (9)

where qi and rj are weight coefficient, from the every time k, there
are j control increments �u(k), . . . ,�u(k + j − 1), y(k + i) is actual
output, and ym(k + i) is model predictive output. The constraints on
the system variables can be confirmed according to different system
requirements. The discrete optimization of the control sequence
employs a branch-and-bound algorithm, which is an integral part
of the programming. The basic concept of obtaining the optimal
solution is to divide the feasible solution space into a number of
small subspaces, and then to select the appropriate upper and lower
boundary functions for narrowing the solution scope until the opti-
mal solution is obtained [8,21–25].

3.1. Determining the tree structure discrete search space of the
control sequence U(k)

The error e(k) between the objective setting value yr(k) of the
current sampling period and the actual system output y(k), and the
error change ratio ec(k), may be calculated as follows:

e(k) = yr(k) − y(k) (10)

ec(k) = e(k) − e(k − 1) (11)

e and ec are discretized into E and EC in their respective fuzzy
domains, and the variable du(k) of u(k) is inferred according to the
following analytical fuzzy reasoning formula:

du(k) = ˛E + (1 − ˛)EC (12)

where ˛ is an undetermined coefficient.
The consecutive space of u(k) that is centered on u(k − 1) is given

by

B = (u(k − 1) − abs(du), u(k − 1) + abs(du)) (13)

The consecutive space of u(k) is then discretized into the discrete
search space. Analogously, the discrete search space of u(k + i) can
be obtained according to yr(k + i) and ŷ(k + i) in the control horizon
(1 ≤ i ≤ M − 1) based on each discrete search point of u(k + i − 1). The
control sequence does not branch anymore during the sampling
period beyond the control horizon (M ≤ i ≤ P − 1). Fig. 3 illustrates
the discrete search space of tree structure of the control sequence
U(k) in the predictive horizon P and the control horizon M. In this
figure, ut(k + i) (t = 1, . . ., nk+1) denotes the tth discrete search point in
the discrete space of u at the (k + i)th sample instant. This algorithm
embodies the branch principle of the branch-and-bound method
[19].

3.2. Searching for the optimal control sequence
The process of searching for the optimal control sequence U(k)
is shown in Fig. 3. In the discrete search space of tree structure,
searching for an optimal control sequence means meeting the cri-
terion that the quadratic objective function is minimized. Firstly,
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This section presents numerical simulations to illustrate the
validation of the proposed predictive control developed for the tem-
perature of SOFC stack based on an improved T–S fuzzy model. From

Table 1
Parameters of the SOFC stack used in the physical model.

Item Value

Cell number 60
Cell active area (m2) 0.01
Heat capacity per cell area (J K−1 m−2) 7000
Arm power (kW) 3.5
Anode total volume (m3) 0.005
Cathode total volume (m3) 0.001
Gas inlet flow constant 0.3629 × 10−5

Anode gas outlet flow constant 0.0544 × 10−5

Cathode gas outlet flow constant 0.2118 × 10−5

Air heat capacity (J kg−1 K−1) 1004
Air density (kg m−3) 1.23
Oxygen density (kg m−3) 1.36
Nitrogen density (kg m−3) 1.19
Air gas constant (kg m−3) 286.9
Oxygen gas constant (kg m−3) 259.8
Nitrogen gas constant (kg m−3) 296.8
Hydrogen gas constant (kg m−3) 4.1243 × 103

Oxygen molar mass (kg mol−1) 0.032
Nitrogen molar mass (kg mol−1) 0.028
Hydrogen molar mass (kg mol−1) 2.016 × 10−5
Fig. 3. The tree structure discrete searching space of control sequence U(k).

he greedy algorithm is employed to find a good solution in order
o set the initial upper boundary for the performance index [27].

It is then assumed that u(k + i − 1) has been given. The perfor-
ance indices of all discrete control variables ut(k + i) (t = 1, . . ., nk+1)

re calculated at the (k + i)th (i = 1, . . ., P − 1) level according to Fig. 3:

t(k + i) = qi[yr(k + i) − yt(k + i)]2 + ri[ut(k + i) − u(k + i − 1)]2

(14)

The minimum of the quadratic objective function as well as
(k + i) can be expressed as follows:

min(k + i) = min
t

{Jt(k + i)} (15)

Jupper is the initial upper boundary of performance index for
earching for the optimal control sequence and it can be calculated
y the following formula:

upper =
P−1∑
i=0

J(k + i) (16)

The process of searching for the optimal control sequence U(k)
s shown in Fig. 4. The notation in the following steps corresponds

ith that in Fig. 4.

1) It is assumed that ut(k + i) (i = 1, . . ., P − 1) is based on u(k + i − 1)

and J is calculated as follows:

J =
k+i∑
l=k

ql[yr(l) − y(l)]2 +
min{M,k+i}∑

l=k

rl�u(l)2 (17)

Fig. 4. Demonstration of the searching process.
urces 193 (2009) 699–705

(2) While J is less than Jupper, the process will continue from
u(k + i + 1) to u(k + P − 1) on the basis of ut(k + i); J is assigned
to Jupper (Jupper = J) if J is still less than Jupper in the process.

(3) When J is greater than Jupper, the latter subspaces with respect
to ut(k + i) are eliminated and ut+1(k + i) is reselected.

(4) If t = nki, u(k + i + 1) must be reselected.

In this way, the entire space is searched and the optimal control
sequence U(k) with respect to the minimum J is found. The first-
dimension element u(k) of U(k) is regarded as a control variable for
the next sampling period and is applied to the controlled objective
so that a new sampling output value y(k + 1) is obtained. When the
new input–output data vector x(k) is restructured, it is applied to
receding horizon optimization control of the next circulation.

4. Simulation results
Faraday’s constant 96485.34
Universal gas constant (kg m−3) 8.31451

Fig. 5. Load current curve.
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ig. 6. Tracking curves and error of actual output and model predictive control.

bove-mentioned Sections 2 and 3, the model predictive control
s designed based on the improved T–S model which is set up at
rst. The SOFC physical model (see Appendix B) described in Ref.
19] is used to obtain the input/output data, and just replaces the
rue SOFC stack. In this study, the training data is generated with
he physical SOFC model. In order to obtain available identification
ata, the input signals of the SOFC physical model were uniformly
andom, mainly is the current (0–60 A). The parameters of a 3.5 kW
OFC stack were used in the simulation, and are given in Table 1.
he input/output data was collected from the simulation, and then
he fuzzy modeling algorithm was employed to identify the T–S
uzzy model. To validate the improved T–S fuzzy model, it was used
o perform dynamic simulation of the SOFC stack. The SOFC stack
emperature had to be kept constant (in general 973.15 K). The ini-
ialization parameters of the improved T–S model were as follows:

umber of fuzzy clustering c = 4, fuzzy parameter m = 3, and learn-

ng rate � = 0.2. Simulations were performed for all the schemes
ith the following tuning parameters of the predictive controller:
rediction horizon P = 14, control horizon M = 3, controlled variable

Fig. 7. Response of model predictive control.
urces 193 (2009) 699–705 703

weighting r = 0.2. The load current was considered as a disturbance,
as shown in Fig. 5. Tracking curves and the deviation between the
actual output and the model predictive output of the stack temper-
ature are shown in Fig. 6. The deviation between the actual output
and the model predictive control fluctuates within ±2 K and the
MPC control strategy displays good control accuracy. Fig. 7 shows
that the SOFC stack is controlled by the nonlinear predictive con-
trol algorithm based on the improved T–S fuzzy model. MPC adjusts
the operating temperature to the set value (973.15 K), minimizes
the temperature fluctuation, and provides control with satisfactory
effectiveness.

5. Conclusions

Thermal management of SOFC stacks is very important because
high temperature and temperature fluctuation can lead to seri-
ous problems. In this study, a nonlinear MPC algorithm based
on a T–S fuzzy identification model has been proposed. Simula-
tion results have shown the MPC method to be valid and that it
gives good performance by virtue of the nonlinear predictive con-
troller.

It is clear that a model of a nonlinear SOFC stack can be built on
the basis of an improved T–S fuzzy model, and that this can be used
to predict the temperature responses online. The stack temperature
can be controlled so as to smoothly maintain the set value, and the
simulation results show the nonlinear predictive controller to be
superior for this purpose.
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Appendix A. Nomenclature

A cell active area (m2)
Cp specific heat capacity of gas species (J mol−1 K−1)
Ċp area specific heat capacity (J K−1 m−2)
F Faraday’s constant (96,485 C mol−1)
H enthalpy (J)
Ḣ enthalpy flow (W)
h specific enthalpy (J mol−1)
I current (A)
i current density (A m−2)
i0 exchange current density (A m−2)
ir reaction current density (A m−2)
m mass (kg)
N molar flux (mol m−2 s−1)
n number of moles (mol)
ṅ molar flow (mol s−1)
ni molar number of species i (mol)
ṅc hydrogen combustion molar flow (mol s−1)
P pressure (bar)
R universal gas constant (8.314 J mol−2 K−2)
T temperature (K)
T0 ambient temperature (K)
t time (s)

U voltage (V)
V volume (m2)
x input vector
xi molar fraction of species
y output vector
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reek letters
symmetry factor, learning factor
a T–S factor
stoichiometric coefficient
overpotential (V)

ubscripts
gas species i
reaction

uperscripts
n fuel cell inlet
ut fuel cell outlet

ppendix B. A physical model of an SOFC stack

In this SOFC physical model, some simplifications and assump-
ions are made, since high accuracy is not necessary for a physical

odel that serves for a subsequent control strategy. Any deviations
etween the model and the real fuel cell can be managed by a
eedback loop in the control system [28]. This section has many
ymbols which can be defined in Appendix A. The proposed SOFC
tack physical model has the following assumptions:

1) Stack is fed with hydrogen and air; the fuel processor dynamics
are not included.

2) A uniform gas distribution among the cells is assumed, since
there is a small deviation of the gas distribution.

3) There is no heat transfer among the cells. Each cell has the same
temperature and current density.

4) There is no heat exchange between the stack and the ambient
environment.

5) The channels that transport gases along the electrodes have a
fixed volume and small dimension, so there is a constant pres-
sure in the stack.

.1. Mass balance model

For a generic species i, the dynamic mole balance is

dni

dt
= ṅinxin

i − ṅoutxi + vi
irA

F
(B.1)

The stoichiometric factor vi indicates how many moles of the
pecies are produced or consumed for each mole of electrons
ransferred. The anodic and cathodic reactions in the SOFC are,
espectively:

2 + O2− → H2O + 2e−

/2O2 + 2e− → O2− (B.2)

hen �O2 = −1/2, �H2 = −1, �H2O = 1, and �N2 = 0.
According to the Butler–Volmer equation [29]:

r = i0(e˛(nF/RT)� − e−(1−˛)(nF/RT)�) (B.3)

When pressure is constant, the total outlet molar flow depends
nly on the transient reaction rate and temperature and can be
alculated using the following relation:

∑

˙ out = ṅin +

i

�i
irA

F
+ pV

RT2

dT

dt
(B.4)

The term
∑

i�i(irA/F) represents the algebraic sum of gas reac-
ion molar flow, and (pV/RT2) (dT/dt) reflects thermal expansion.
urces 193 (2009) 699–705

Inserting Eq. (B.4) into Eq. (B.1) and assuming constant pressure,
the molar balance becomes:

pV

RT

dxi

dt
= ṅin(xin

i − xi) + irA

F

⎛
⎝�i − xi

∑
j

�j

⎞
⎠ (B.5)

B.2. Energy balance model

Here only the enthalpy balance is considered. The main sources
and sinks of heat for an SOFC are entering and exiting flow, the heat
generated by cell reactions, and the heat lost to the environment.
An enthalpy balance equation yields:

dH

dt
= Ḣin − Ḣout − irVA − Ḣloss (B.6)

The term irVA represents the electrical power generated. The
relationship between enthalpy and temperature can be expressed
as:

dH

dt
= Aċp

dT

dt
(B.7)

The entering enthalpy flow also contains the heat generated by
the combustion of hydrogen, hence the total entering enthalpy flow
is equal to the enthalpy associated with the ambient air plus the
entering hydrogen flow:

Ḣin = ṅairhair(T0) + (ṅH2 + ṅc
H2

)hH2 (TH2 ) (B.8)

For simplification TH2 = T0 is assumed without causing any
meaningful deviation.

The total outlet molar flow will be larger than or equal to the
entering one and the expression of this is

Ḣout =
∑

i

ṅout
i hi(T) (B.9)

and the outlet molar flow for species i, ṅout
i

can also be expressed
as:

ṅout
i = ṅin

i + �i

(
ṅc

H2
+ irA

2F

)
+ xi

pV

RT2

dT

dt
(B.10)

where ṅin
i

is the entering molar flow, �i(ṅc
H2

+ (irA/2F)) is the molar
flow associated with hydrogen reaction and combustion, and the
term xi (pV/RT2) (dT/dt) is related to gas thermal expansion. For the
sake of simplicity, it is assumed that Ḣloss = 0 [28].

B.3. Temperature control dynamic model

Having assumed that temperature is uniform in a stack, Eq. (B.6)
determines its dynamics. According to simultaneous Eqs. (B.6) and
(B.7), it can be obtained that

Aċp
dT

dt
= Ḣin − Ḣout − irVA

= (Ḣin(T) − Ḣout(T)) − (Ḣin(T) − Ḣin(T0)) − irVA (B.11)

The terms (Ḣin(T) − Ḣout(T)) and (Ḣin(T) − Ḣin(T0)), respectively,
represent the reaction heat and the sensible heat.
In Eq. (B.11) it assumed that the specific heat capacity for all
the species is approximately the same on condition that the pres-
sure is constant. This is adequate for the control-oriented modeling.
According to Eq. (B.11), the temperature control model can be built
with MATLAB.
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.4. Temperature control model realization in MATLAB

This physical MATLAB model has two input variables, air flow
nd H2 flow, and one output variable, T. A virtual 3.5 kW SOFC stack
s used in the simulation. The stack consists of 60 cells with anode
nd cathode gases in cross-flow and cell active area 0.01 m2. The
hysical model replaces the real SOFC stack to generate the simula-
ion data required for the modified T–S fuzzy model. The enthalpy
xpressions can be acquired from the published literature [30] and
he relationship between enthalpy and temperature for different
ases is reflected in these expressions. The Enthalpy out block and
nthalpy in block can be expressed as follows (w expresses molar
ow):

For Enthalpy in block:

h in = w air × h air + w H2 × h H2 + w V × h V (B.12)

where

h air = −1.0947 e4 + 32.50T air

h H2 = −0.9959 e4 + 30.73T fuel

h V = −25.790 e4 + 42.47T fuel (B.13)

w H2 = w fuel × fi moelra × 2.016/(fi moelra × 2.016 + 18.02)

w V = w fuel − w H2 (B.14)

For the Enthalpy out block:

h out = w O2 × h O2 + w N2 × h N2 + w H2 × h H2 + w V × h V

(B.15)

and
h O2 = −1.2290 e4 + 35.12T

h N2 = −1.0590 e4 + 31.40T

[

[

urces 193 (2009) 699–705 705

h H2 = −0.9959 e4 + 30.73T

h V = −25.790 e4 + 42.47T (B.16)

Based on the physical model, it can be established that the load
signal change can vary the SOFC stack temperature.
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